- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- PEYRONEL, G. (1940). Z. Kristallogr. 103, 139.
- PEYRONEL, G. (1941). Z. Kristallogr. 103, 157.
- PEYRONEL, G. & PIGNEDOLI, A. (1959a). Ric. sci. 29, 1218.
- PEYRONEL, G. & PIGNEDOLI, A. (1959b). Ric. sci. 29, 1505.
- PIGNEDOLI, A. & PEYRONEL, G. (1962). *Gazz. chim. ital.* 92, 745.
- PIMENTEL, G. C. & McClellan, A. L. (1960). *The Hydrogen Bond*. London: W. H. Freeman.

PINCHAS, S. (1955). Anal. Chem. 27, 2.

- POMPA, F., ALBANO. V., BELLON, P. L. & SCATTURIN, V. (1963). *Ric. sci.* 33, 1151.
- SHUGAM, E. A. & LEVINA, V. M. (1960). Kristallografiya, 5, 257. (English translation (1960) in Soviet Phys. Crystallogr. 5, 239).
- THORN, G. D. & LUDWIG, R. A. (1962). *The Dithiocarbamates and Related Compounds*. Amsterdam and New York: Elsevier.
- ÅSBRINK, S. & WERNER, P. E. (1966). Acta Cryst. 20, 407.

Acta Cryst. (1967). 23, 410

# The Crystal Structure of Ethyl Carbamate

BY B. H. BRACHER\* AND R.W. H. SMALL<sup>†</sup>

Chemistry Department, University of Birmingham, England

#### (Received 9 March 1967)

The structure of ethyl carbamate (urethane,  $C_2H_5$ .O.CONH<sub>2</sub>) has been determined using threedimensional X-ray intensities measured with a proportional counter at two different temperatures. Atomic positions and anisotropic vibrational parameters have been refined by the method of least squares, and the vibrational parameters interpreted in terms of the rigid -body vibrations of the molecule.

#### Introduction

Several high-accuracy X-ray studies of the amide group have been made in recent years, including some in this laboratory using the three-circle diffractometer of Small & Travers (1961). In connection with these studies, the determination of the structure of ethyl carbamate is of interest in enabling a comparison to be made between the amidic C-O and C-N bond lengths in the carbamate group and those in other amides. Further interest lies in the length of the C-O bond connecting the carbamate group to the ethyl group, for studies of similar bonds in carboxylic acid esters (O'Gorman, Shand & Schomaker, 1950; Dougill & Jeffrey, 1953), tend to suggest that this bond is much longer than would be expected for a single C-O bond, although no really accurate evidence for this is yet available.

Intensity data measured for a crystal at room temperature ca. 25 °C showed that large atomic vibrations were present in ethyl carbamate crystals at this temperature. With a view to achieving greater accuracy from an increased number of measurements, the intensity measurements were repeated at -105 °C. Although more reflexions were observed at this temperature, the accuracy of the molecular parameters derived was not improved. Inaccuracies in the intensity measurements at the lower temperature arose from the design of the cooling system which was still under development at that time.

#### Crystal data

Crystals of ethyl carbamate, suitable for X-ray analysis, were obtained from a commercial sample by slow evaporation of an ethereal solution containing a small amount of light petroleum. The crystals were found to evaporate rapidly at normal temperatures, and it was necessary to seal them in Lindemann or 'Pantak' capillary tubes for all diffraction work. This process was usually hindered by the rather plastic nature of the crystals.

Preliminary Weissenberg photographs showed that ethyl carbamate crystallizes in the triclinic system, but accurate measurement of the unit-cell dimensions by the usual photographic methods was prohibited by a complete lack of observable reflexions at high Bragg angles. The suitability of diffractometer methods for precision cell dimension measurement has been demonstrated by Bond (1960) and so the instrument of Small & Travers was used in the following way for this purpose.

For a series of orders of reflexion from a certain set of crystal planes, line profiles were plotted with  $2\theta$ fixed and  $\omega$  moving for each reflexion, the angles  $\varphi$ and  $\chi$  being kept fixed throughout. To remove zero errors arising from both the instrument itself and missettings of  $\varphi$  and  $\chi$  the 'observed' interplanar spacing for each measured value of  $\theta_{obs}$  was plotted against

<sup>\*</sup> Present address: Ceramics Division, Atomic Energy Research Establishment, Harwell, Didcot, Berks, England. † Present address: Chemistry Department, University of Lancaster, St. Leonard Gate, Lancaster, England.

cot  $\theta_{obs}$ ; this gave a straight-line graph of intercept  $d_{true}$  (the true spacing) and gradient  $\alpha d_{true}$ , where

$$\theta_{\rm obs} + \alpha = \theta_{\rm true}.$$

At 25 °C, the spacings (100), (010), (001), (101) and (110) were measured in this way to give the cell dimensions by triangulation. At -105 °C, fourteen interplanar spaces were measured, the cell dimensions being determined by least-squares on the MERCURY computer at the University of Oxford. The resultant cell dimensions based on Cu  $K\alpha$  ( $\lambda = 1.5418$  Å) are:

At 25°C,

$$a = 5 \cdot 023 \pm 0 \cdot 001, \ b = 7 \cdot 044 \pm 0 \cdot 002, \ c = 7 \cdot 763 \pm 0 \cdot 002 \text{ Å}$$
  

$$\alpha = 102^{\circ}28' \pm 2', \ \beta = 102^{\circ}35' \pm 2', \ \gamma = 77^{\circ}41' \pm 2'$$
  

$$V = 257 \cdot 69 \pm 0.05 \text{ Å}^3.$$

At  $-105 \,^{\circ}$ C,  $a = 5.051 \pm 0.002$ ,  $b = 7.011 \pm 0.004$ ,  $c = 7.543 \pm 0.003$  Å  $\alpha = 101 \,^{\circ}22' \pm 3'$ ,  $\beta = 104 \,^{\circ}35' \pm 3'$ ,  $\gamma = 76 \,^{\circ}39' \pm 2'$  $D_{\text{obs}} \, 1.16$   $D_{\text{calc}} \, 1.15$  for Z = 2.

Initially, photographic and counter intensity data were collected for the (h0l) and (0kl) zones, and an analysis of the statistical distribution of intensities in these zones revealed the presence of a centre of symmetry (Howells, Phillips & Rogers, 1950) indicating space group  $P\bar{1}$ . At a later stage, three-dimensional intensity data were collected by means of the diffractometer, the use of which has already been described in detail elsewhere (Beagley & Small, 1963). At 25°C, only 715 out of a possible 1060 unique reflexions proved to be measurable, while at -105°C, this number was increased to 850.

Approximate absorption corrections were applied to all three-dimensional data, by assuming the crystal to be a cylinder with its axis coincident with the  $\varphi$  axis of the diffractometer. The method of Albrecht (1939) was applied to the elliptical section of the crystal in the plane of the incident and reflected X-ray beams, for various values of  $\theta$  and  $\chi$ , individual absorption corrections being estimated by interpolation.

For the data at -105 °C, the graphical methods of Albrecht were replaced by computation on the MER-CURY computer.

## Determination and refinement of the structure

The structure was determined by the interpretation of sharpened Patterson projections on (010) and (100). The sharpening function was

$$M(S) = (1/\hat{f})^2 \exp(-4\pi^2 \sin^2\theta/7.25\lambda^2)$$
.

Refinement was carried out by Fourier, difference Fourier and least-squares methods, and was discontinued when the discrepancy indices were  $R_{h0l} = 0.20$ and  $R_{0kl} = 0.24$ .

Refinement of the three-dimensional data, at both temperatures, was carried out on the MERCURY computer using the SFLS program of Dr J.S.Rollett. For the data at 25°C, nine cycles of refinement with the weighting scheme

$$|F_o| > 20, \ \forall w = 20/|F_o|$$
  
 $|F_o| < 20, \ \forall w = 1$ 

reduced  $R_{hkl}$  to 0.14. At this point the weighting scheme was changed to

$$w = 1/[1 + ((|F_o| - 2 \cdot 0)/5 \cdot 0)^2]$$

and refinement ceased with R=0.11. A three-dimensional difference synthesis was computed with the program of Mr O.S. Mills, and this showed the positions of the seven hydrogen atoms in their expected places. For further refinement, the hydrogen atoms were included in the structure model and were given the temperature factors of their parent atoms. No attempt was made to refine the parameters of the hydrogen atoms, and refinement converged with  $R_{hkl}=0.64$ . A second three-dimensional difference synthesis showed no significant feature at this point.

The data collected at -105 °C were used for refinement in a similar manner, and with the ultimate weighting scheme

$$w = 1/[1 + ((|F_o| - 2 \cdot 0)/2 \cdot 4)^2]$$

a final reliability index of  $R_{hkl} = 0.87$  was obtained. The atomic coordinates of the hydrogen atoms are given in Table 1. The final positional and vibrational

Table 1. Coordinates of hydrogen atoms

|                     | x a    | y/b   | z/c   |
|---------------------|--------|-------|-------|
| (a) 25°C            |        | •     | •     |
| H(1)                | -0.324 | 0.906 | 0.417 |
| H(2)                | -0.041 | 0.800 | 0.500 |
| H(3)                | -0.124 | 0.866 | 0.220 |
| H(4)                | -0.258 | 0.533 | 0.390 |
| H(5)                | -0.375 | 0.600 | 0.146 |
| H(6)                | 0.417  | 0.216 | 0.158 |
| H(7)                | 0.246  | 0.033 | 0.020 |
| ( <i>b</i> ) −105°C |        |       |       |
| H(1)                | -0.300 | 0.860 | 0.383 |
| H(2)                | 0.042  | 0.767 | 0.500 |
| H(3)                | -0.104 | 0.883 | 0.283 |
| H(4)                | 0.296  | 0.543 | 0.358 |
| H(5)                | -0.363 | 0.593 | 0.142 |
| H(6)                | 0.425  | 0.200 | 0.167 |
| H(7)                | 0.220  | 0.033 | 0.067 |

 Table 2. Atomic coordinates from final least-squares cycle

|                      | -        |         |         |
|----------------------|----------|---------|---------|
|                      | x/a      | y/b     | z/c     |
| (a) 25°C             |          | • •     | •       |
| C(1)                 | -0.14311 | 0.79092 | 0.36409 |
| C(2)                 | -0.22885 | 0.59772 | 0.27468 |
| C(3)                 | 0.00198  | 0.28267 | 0.15368 |
| N                    | 0.24284  | 0.16657 | 0.12427 |
| O(1)                 | 0.02662  | 0.46424 | 0.23633 |
| O(2)                 | -0.51882 | 0.22516 | 0.10746 |
| $(b) - 105^{\circ}C$ |          |         |         |
| C(1)                 | -0.13039 | 0.79270 | 0.36452 |
| C(2)                 | -0.21887 | 0.59678 | 0.27521 |
| C(3)                 | 0.00727  | 0.28007 | 0.15288 |
| N                    | 0.25108  | 0.16633 | 0.12828 |
| O(1)                 | 0.03729  | 0.46255 | 0.23785 |
| O(2)                 | -0.21542 | 0.22614 | 0.10596 |

parameters of the heavier atoms are shown in Tables 2 and 3 respectively.

For all refinement calculations, the atomic scattering factors used were those tabulated for carbon, oxygen and nitrogen by Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955), and, for hydrogen by McWeeny (1951).

### The vibrational analysis

The temperature factor in the least-squares refinement is  $2^{-(b_{11}h^2+b_{22}k^2+b_{33}l^2+b_{12}hk+b_{13}hl+b_{23}kl)}$ .

With the use of the MERCURY program of Dr R. Sparks, these values of  $b_{ij}$  were converted to the magnitudes of the principal ellipsoids of vibration and their direction cosines relative to the axes  $a, b', c^*$ . Molecular axes L, M, N were chosen so that L was parallel to the C(3)-O(1) bond in the carbamate group, M was perpendicular to L and in the plane of the carbamate group, and N was perpendicular to both L and M; the origin was taken as the centroid of the molecule.

For each atom, the mean-square amplitudes of vibration in the directions L, M, N, together with their standard deviations as derived from the variance matrices for  $b_{ij}$  in the refinement, were calculated. (These are shown in Table 4.) Attempts were then made to analyse these amplitudes in terms of rigid-body vibrations of the molecule. It was found that, because of

the hydrogen bonding to the carbamate group, there is an apparent shift in the centre of libration towards the carbamate group. This shift was found to be 1.27 Å at 25 °C, and 1.28 Å at -105 °C. The values obtained for the mean-square rigid-body translational amplitudes ( $\tau^2 L$ ,  $\tau^2 M$ ,  $\tau^2 N$ ) and librational amplitudes ( $\omega^2 L$ ,  $\omega^2 M$ ,  $\omega^2 N$ ) are given in Table 5. The method of Cruickshank (1956) was used to correct the atomic coordinates for rotational oscillations.

| Table 5.   | Vibrational | amplitudes | $(A^2 and$ | ' radians²) |
|------------|-------------|------------|------------|-------------|
| () 11 2500 |             |            |            |             |

| ( <i>a</i> ) At 25 | -L                |              |                       |
|--------------------|-------------------|--------------|-----------------------|
| $	au_L^2$          | $0.064 \pm 0.003$ | $\omega_L^2$ | zero                  |
| $\tau_M^2$         | $0.040 \pm 0.002$ | $\omega_M^2$ | $0.0136 \pm 0.0039$   |
| $	au_N^2$          | $0.120 \pm 0.030$ | $\omega_N^2$ | $0.00688 \pm 0.00083$ |
| (b) At -           | 105°C             |              |                       |
| $\tau_L^2$         | $0.028 \pm 0.003$ | $\omega_L^2$ | zero                  |
| $\tau_M^2$         | $0.021 \pm 0.004$ | $\omega_M^2$ | $0.0021 \pm 0.0015$   |
| $\tau_N^2$         | $0.061 \pm 0.009$ | $\omega_N^2$ | $0.00463 \pm 0.00012$ |
|                    |                   |              |                       |

#### Results

The values obtained for the bond lengths and bond angles are shown in Fig. 3 and Table 6. The standard deviations in bond lengths and bond angles involving only C, N and O atoms take into account not only the standard deviations in position as estimated from the final least-squares cycle, but also the estimated standard deviations in the cell dimensions and the librational corrections. The standard deviations in

Table 3. Vibrational parameters from final least-squares cycle

|                      | b11     | b22     | b33     | b23      | b13     | $b_{12}$ |
|----------------------|---------|---------|---------|----------|---------|----------|
| (a) 25°C             |         |         |         |          | -       |          |
| C(1)                 | 0.22786 | 0.04679 | 0.05887 | -0.00653 | 0.04135 | -0.01302 |
| C(2)                 | 0.11756 | 0.04412 | 0.06690 | -0.00698 | 0.03607 | -0.00203 |
| C(3)                 | 0.07226 | 0.04577 | 0.04925 | -0.00266 | 0.04005 | -0.03295 |
| NÚ                   | 0.05665 | 0.05508 | 0.06847 | -0.01184 | 0.05196 | -0.03097 |
| O(1)                 | 0.08495 | 0.04533 | 0.05868 | -0.01064 | 0.03719 | -0.04099 |
| O(2)                 | 0.06141 | 0.05065 | 0.07358 | -0.01680 | 0.05014 | -0.04169 |
| (b) $-105^{\circ}$ C | 2       |         |         |          |         |          |
| C(1)                 | 0.12263 | 0.01889 | 0.03260 | -0.00261 | 0.01127 | -0.01062 |
| C(2)                 | 0.06308 | 0.02090 | 0.02932 | -0.00230 | 0.02068 | -0.00083 |
| C(3)                 | 0.03521 | 0.01993 | 0.02057 | 0.00214  | 0.01709 | -0.01876 |
| N                    | 0.03108 | 0.02770 | 0.03181 | -0.00990 | 0.02803 | -0.02321 |
| O(1)                 | 0.04824 | 0.01982 | 0.02566 | -0.00405 | 0.01198 | -0.02204 |
| O(2)                 | 0.03222 | 0.02255 | 0.03358 | -0.00724 | 0.02697 | -0.01831 |

Table 4. Mean-square amplitudes of vibration  $(Å^2)$ 

|                      | -                 | 1 5               | · · ·             |
|----------------------|-------------------|-------------------|-------------------|
|                      | $u_L^2$           | $u_M^2$           | $u_N^2$           |
| (a) 25°C             |                   |                   | -                 |
| C(1)                 | $0.071 \pm 0.009$ | $0.171 \pm 0.016$ | $0.131 \pm 0.029$ |
| C(2)                 | 0.069 0.011       | 0.089 0.018       | 0.147 0.022       |
| C(3)                 | 0.066 0.028       | 0.054 0.019       | 0.103 0.012       |
| N                    | 0.078 0.008       | 0.039 0.003       | 0.146 0.006       |
| O(1)                 | 0.061 0.013       | 0.066 0.014       | 0.130 0.007       |
| O(2)                 | 0.066 0.005       | 0.043 0.004       | 0.159 0.004       |
| $(b) - 105^{\circ}C$ |                   |                   |                   |
| C(1)                 | $0.030 \pm 0.006$ | $0.091 \pm 0.009$ | $0.064 \pm 0.016$ |
| C(2)                 | 0.033 0.010       | 0.046 0.024       | 0.059 0.038       |
| C(3)                 | 0.029 0.037       | 0.026 0.020       | 0.037 0.024       |
| N                    | 0.035 0.008       | 0.020 0.005       | 0.064 0.005       |
| O(1)                 | 0.026 0.007       | 0.039 0.023       | 0.054 0.019       |
| O(2)                 | 0.031 0.010       | 0.023 0.007       | 0.066 0.004       |

bonds to hydrogen were obtained from the earlier three-dimensional difference syntheses, using the method of Cruickshank (1949).





Table 6 (cont.)

Fig. 1. Projection of the structure along the a axis. Hydrogen atoms have been omitted: broken lines indicate hydrogen bonds.

NITROGEN

CARBON





ົດ

O OXYGEN

Fig. 3. (a) Diagram of molecule showing atom labelling scheme. (b) Bond lengths and angles at 25 °C. (c) Bond lengths and angles at -105 °C.

The C, N and O atoms in the carbamate group are coplanar within the limits of experimental error, the atoms of the ethyl group lying slightly but significantly outside this plane. The equations of the molecular plane, referred to the axes  $a, b', c^*$ , and as determined by least squares, are:

(a) at 25°C,

-0.13695x - 0.44866y + 0.88315z - 0.20681 = 0

## Table 7. Deviations of C,N,O atoms from plane of carbamate group

|      | •       | <b>U</b> 1  |
|------|---------|-------------|
|      | 25°C    | -105°C      |
| C(1) | -0.012  | Å – 0.020 Å |
| C(2) | 0.020   | 0.033       |
| C(3) | 0.0012  | 2 - 0.0026  |
| N    | -0.0003 | 3 0.0008    |
| O(1) | -0.0004 | 4 0.0008    |
| O(2) | 0.0004  | 4 0.0010    |
|      |         |             |

(b) at  $-105^{\circ}$ C,

-0.14909x - 0.43299y + 0.88896z - 0.19821 = 0.

The deviations of the heavier atoms from these planes are given in Table 7.

# The molecular arrangement

The crystal structure is very similar to that of monofluoroacetamide (Hughes & Small, 1962): it consists of chains of hydrogen-bonded dimers, roughly parallel to (01 $\overline{2}$ ), the extension of the chains being in the direction of the *a* axis. Each oxygen [O(2)] and nitrogen atom forms two hydrogen bonds, thus using both hydrogen atoms in the group  $-NH_2$ .

The hydrogen bonds connecting each dimeric pair of centrosymmetrically related molecules are roughly perpendicular to the a axis, and have a mean (N···O)

|                        | C–N              | C-O              | NCO           | Reference                        |
|------------------------|------------------|------------------|---------------|----------------------------------|
| Ethyl carbamate e.s.d. | 1·345 Å<br>0·003 | 1·221 Å<br>0·003 | 123·6°<br>0·3 | This work                        |
| Succinamide*           | 1·333            | 1·238            | 122·0         | Davies & Pasternak (1956)        |
| e.s.d.                 | 0·002            | 0·002            | 0·2           |                                  |
| Oxamide*               | 1·315            | 1·243            | 125·7         | Ayerst & Duke (1954)             |
| e.s.d.                 | 0·004            | 0·004            | 0·3           |                                  |
| Monofluoroacetamide    | 1·319            | 1·254            | 124·0         | Hughes & Small (1962)            |
| e.s.d.                 | 0·005            | 0·005            | 0·4           |                                  |
| 6-Amido-3-pyridazone   | 1·320            | 1·252            | 123·2         | Beagley & Small (unpublished)    |
| e.s.d.                 | 0·008            | 0·007            | 0·6           |                                  |
| Ammonium oxamate       | 1·324            | 1·248            | 124·2         | Beagley & Small (1963)           |
| e.s.d.                 | 0·002            | 0·002            | 0·2           |                                  |
| α-Pyrazinamide         | 1·312            | 1·244            | 123·1         | Takaki, Sasada & Watanabe (1960) |
| e.s.d.                 | 0·008            | 0·008            | 0·6           |                                  |

Table 8. Dimensions of the amide group in different compounds

\* Not corrected for librational motion.

# Table 9. Dimensions of C-O bonds in various esters

| Ethyl carbamate e.s.d.       | C-O(a)<br>(Å)<br>1·472<br>0·004 | C-O(b)<br>(Å)<br>1·337<br>0·003 | C-O(c)<br>(Å)<br>1·221<br>0·003 | Reference<br>This work   |
|------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|
| Methyl chloroformate*        | 1·47                            | 1·37                            | 1·22                            |                          |
| e.s.d.                       | 0·04                            | 0·04                            | 0·03                            |                          |
| Methyl formate*              | 1∙46                            | 1·36                            | 1·22                            | O'Gorman, Shand &        |
| e.s.d.                       | 0∙04                            | 0·04                            | 0·03                            | Schomaker (1950)         |
| Methyl acetate*              | 1∙47                            | 1∙36                            | 1·19                            |                          |
| e.s.d.                       | 0∙04                            | 0∙04                            | 0·03                            |                          |
| Dimethyl oxalate             | 1∙46                            | 1·31                            | 1·19                            | Dougill & Jeffrey (1953) |
| e.s.d.                       | 0∙04                            | 0·02                            | 0·02                            |                          |
| Diethyl terephthalate e.s.d. | 1·51<br>0·05                    | 1·32<br>0·05                    | 1·28<br>0·05                    | Bailey (1949)            |
| Ethyl stearate               | 1·37                            | 1·36                            | 1·15                            | Aleby (1962)             |
| e.s.d.                       | 0·05                            | 0·05                            | 0·05                            |                          |

\* Electron diffraction studies.

| Table $10(a)$ . | Observed a      | and i | calculated | structure | factors | at 25°C |
|-----------------|-----------------|-------|------------|-----------|---------|---------|
|                 | 0 0 0 0 0 0 0 0 |       |            |           | ,       |         |

|                                                                                                                                                                                                                                                                                                                                                                                             | 50Fo                                                                                                                                                                                                                       | 50Fo                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5070                                                                                                                                                                                                           | 50Po                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 <b>F</b> •                                                                                                                                                                                                                                            | 50Po                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                 | 50 <b>F</b> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 <b>P</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50F0                                                                                                                                                                               | 50 <b>P</b> o                                                                                                                                                                                            |                                                                                                                                                                                                  | 50Po                                                                                                                                           | 5070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  | 5020                                                                                                                          | 50 <b>7</b> 0                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 001         002           003         004           005         006           006         007           008         009           010         011           012         013           014         015           016         013           014         015           015         016           020         021           021         022           023         024           025         025 | 763<br>890<br>424<br>295<br>116<br>48<br>48<br>48<br>47<br>12<br>606<br>415<br>845<br>265<br>265<br>265<br>265<br>16<br>37<br>427<br>489<br>156<br>37<br>839<br>156<br>37<br>839<br>8631<br>804<br>804<br>96<br>403<br>109 | 905<br>-955<br>-2906<br>-44<br>19<br>43<br>-593<br>-450<br>-799<br>-439<br>-439<br>-439<br>-799<br>-267<br>-17<br>802<br>-17<br>802<br>-17<br>802<br>-17<br>802<br>-17<br>802<br>-17<br>804<br>-44<br>-44<br>-156<br>-156<br>-156<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19                                                                                          | 100<br>111<br>112<br>113<br>114<br>114<br>114<br>115<br>116<br>117<br>117<br>117<br>117<br>117<br>117<br>117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1170<br>354<br>91<br>128<br>994<br>4966<br>150<br>2966<br>1503<br>268<br>503<br>268<br>503<br>268<br>503<br>268<br>503<br>268<br>503<br>275<br>211<br>400<br>777<br>177<br>61                                  | -1211<br>-322<br>110<br>14<br>-124<br>-46<br>-46<br>-418<br>-6<br>-418<br>-299<br>-291<br>-291<br>-291<br>-291<br>-291<br>-291<br>-291                | 10012<br>10012<br>10014<br>10014<br>10014<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10010<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>1000000 | 135<br>89<br>38<br>57<br>401<br>13<br>212<br>39<br>86<br>43<br>100<br>34<br>25<br>31<br>76<br>6<br>253<br>73<br>0<br>155<br>460<br>155<br>40<br>16<br>88                                                                                                 | -141<br>83<br>550<br>77<br>-453<br>-109<br>-455<br>685<br>685<br>685<br>685<br>685<br>685<br>-2558<br>681<br>-2558<br>681<br>-2558<br>-754<br>142<br>79<br>-959<br>-959                                                                                                                                            | 230<br>2312<br>233<br>225<br>227<br>227<br>227<br>227<br>227<br>227<br>227<br>227<br>227                                                                                                                        | 93<br>184<br>284<br>284<br>35<br>544<br>100<br>265<br>45<br>84<br>18<br>207<br>468<br>407<br>216<br>63<br>42<br>46<br>37<br>244<br>46<br>37<br>244<br>46<br>84                                                                                                                                                                                                                                                                                                                                                                      | 102<br>-177<br>175<br>-74<br>-73<br>302<br>-73<br>32<br>-73<br>35<br>-302<br>-210<br>48<br>35<br>-206<br>-270<br>426<br>403<br>-210<br>426<br>403<br>-210<br>-25<br>34<br>-71<br>-65<br>34<br>-210<br>40<br>40<br>-271<br>-240<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 313<br>3145<br>3145<br>3145<br>3147<br>3117<br>3117<br>3117<br>3117<br>3117<br>3117<br>3117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59<br>1209<br>1299<br>750<br>90<br>189<br>275<br>123<br>222<br>259<br>14<br>45<br>2220<br>132<br>290<br>132<br>290<br>132<br>80<br>44<br>18<br>381<br>189<br>47<br>11<br>399<br>49 | 63<br>-1256<br>-1368<br>-1788<br>-2689<br>-178<br>-599<br>-121<br>-599<br>-122<br>-376<br>-376<br>-376<br>-376<br>-376<br>-376<br>-38<br>-363<br>-363<br>-43<br>-363<br>-43<br>-43<br>-43<br>-44<br>-444 | 371<br>373<br>373<br>373<br>373<br>383<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>400<br>40                                                                                      | 40<br>85<br>111<br>105<br>32<br>424<br>458<br>118<br>60<br>28<br>27<br>227<br>227<br>227<br>227<br>227<br>227<br>227<br>227<br>2               | 45<br>84<br>-107<br>-89<br>30<br>435<br>-124<br>412<br>-235<br>-257<br>412<br>-235<br>-259<br>-355<br>-355<br>-355<br>-355<br>-355<br>-355<br>-355<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5012112355<br>502112355<br>50255555555555555555555555555555555                   | 191<br>45<br>45<br>153<br>103<br>103<br>104<br>69<br>76<br>42<br>111<br>260<br>178<br>52<br>102<br>67<br>77<br>92<br>55<br>23 | 179<br>33<br>-56<br>164<br>-98<br>-54<br>-98<br>-54<br>-98<br>-54<br>-98<br>-37<br>-37<br>-37<br>-37<br>104<br>-37<br>-37<br>-37<br>-37<br>-37<br>-37<br>-32<br>-63<br>-55<br>20 |
| 028<br>021<br>022<br>023<br>024<br>025<br>025<br>027<br>030<br>031<br>032<br>033<br>034<br>035<br>036<br>037<br>035<br>036<br>037                                                                                                                                                                                                                                                           | 12<br>257<br>41<br>378<br>691<br>99<br>154<br>32<br>796<br>144<br>605<br>216<br>111<br>40<br>54<br>30<br>407<br>293<br>121                                                                                                 | -14<br>-280<br>5<br>379<br>6996<br>100<br>-168<br>-34<br>-823<br>169<br>567<br>223<br>110<br>-28<br>-33<br>-40<br>567<br>-283<br>-45<br>57                                                                                                                                                                                                                                                       | 122<br>123<br>124<br>125<br>126<br>127<br>127<br>128<br>127<br>128<br>127<br>128<br>127<br>128<br>127<br>128<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 522<br>119<br>308<br>314<br>533<br>507<br>706<br>17<br>131<br>36<br>19<br>96<br>465<br>149<br>106<br>103<br>72                                                                                                 | -510<br>-121<br>300<br>17<br>-99<br>-316<br>-562<br>525<br>753<br>6<br>-129<br>-129<br>-129<br>-129<br>-20<br>-94<br>-129<br>-184<br>-113<br>95<br>71 | 171<br>174<br>171<br>173<br>173<br>173<br>173<br>173<br>173<br>180<br>183<br>183<br>183<br>183<br>183<br>183<br>183<br>183<br>183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71<br>26<br>55<br>96<br>29<br>45<br>21<br>49<br>45<br>38<br>16<br>21<br>30<br>508<br>175                                                                                                                                                                 | 79<br>22<br>49<br>-25<br>46<br>30<br>-54<br>46<br>37<br>-48<br>37<br>-12<br>28<br>-464<br>-165                                                                                                                                                                                                                     | 240<br>241<br>242<br>243<br>244<br>245<br>244<br>244<br>244<br>244<br>244<br>244<br>244<br>244                                                                                                                  | 301<br>75<br>476<br>144<br>72<br>81<br>111<br>42<br>151<br>78<br>51<br>66<br>26<br>30<br>65<br>77<br>99<br>14                                                                                                                                                                                                                                                                                                                                                                                                                       | 296<br>-88<br>-451<br>-140<br>84<br>86<br>-42<br>163<br>71<br>-49<br>-54<br>22<br>28<br>69<br>66<br>105<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 328<br>329<br>320<br>320<br>320<br>321<br>3223<br>3224<br>3221<br>3223<br>3224<br>3223<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3224<br>3225<br>3225                                     | 18<br>16<br>123<br>220<br>70<br>171<br>175<br>17<br>123<br>84<br>24<br>49<br>90<br>48<br>255<br>58<br>48<br>255<br>58                                                              | 19<br>22<br>119<br>-226<br>-68<br>156<br>69<br>-20<br>-20<br>54<br>-83<br>-54<br>243<br>70<br>44<br>-25                                                                                                  | 414<br>415<br>416<br>412<br>413<br>414<br>415<br>415<br>415<br>415<br>415<br>415<br>415<br>415<br>415                                                                                            | 164<br>32<br>290<br>224<br>61<br>177<br>120<br>150<br>150<br>57<br>126<br>204<br>60<br>88                                                      | -92<br>-165<br>-31<br>288<br>226<br>7<br>-59<br>-27<br>-156<br>-121<br>-154<br>-126<br>-54<br>-128<br>-210<br>-68<br>88<br>73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 520<br>521<br>523<br>522<br>522<br>525<br>525<br>525<br>525<br>525<br>525<br>525 | 102<br>132<br>90<br>25<br>144<br>230<br>106<br>44<br>66<br>32<br>19<br>36                                                     | -102<br>-129<br>45<br>-99<br>-41<br>144<br>234<br>108<br>-38<br>-57<br>-26<br>-20<br>35                                                                                          |
| 036<br>038<br>039<br>040<br>041<br>042<br>043<br>044<br>045<br>047<br>042<br>045<br>047<br>042<br>045<br>045<br>045<br>045                                                                                                                                                                                                                                                                  | 143<br>41<br>352<br>205<br>258<br>86<br>88<br>72<br>45<br>59<br>311<br>90<br>51<br>39<br>22                                                                                                                                | 134<br>-36<br>-7<br>209<br>258<br>-73<br>-90<br>67<br>-42<br>32<br>-295<br>-87<br>-61<br>-34<br>18                                                                                                                                                                                                                                                                                               | 120<br>121<br>121<br>122<br>123<br>123<br>123<br>124<br>124<br>130<br>131<br>132<br>133<br>134<br>137<br>137<br>137<br>137<br>137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82<br>18<br>582<br>66<br>752<br>40<br>65<br>926<br>191<br>665<br>938<br>17<br>199<br>149<br>199<br>149<br>100<br>100                                                                                           | -12<br>-15<br>541<br>69<br>129<br>27<br>-62<br>-869<br>-201<br>617<br>79<br>-138<br>23<br>-139<br>-146<br>-103                                        | 202<br>204<br>205<br>201<br>202<br>203<br>204<br>205<br>206<br>210<br>211<br>212<br>213<br>214<br>215<br>216<br>218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 319<br>225<br>88<br>16<br>566<br>326<br>257<br>332<br>58<br>617<br>78<br>250<br>617<br>782<br>304<br>49<br>37<br>18<br>35                                                                                                                                | -297<br>212<br>83<br>23<br>-520<br>-304<br>-283<br>250<br>336<br>58<br>-626<br>548<br>311<br>60<br>-44<br>1<br>-26                                                                                                                                                                                                 | 2451<br>2421<br>2422<br>2433<br>2445<br>2445<br>2445<br>2445<br>2553<br>2554<br>2553<br>2554<br>2553<br>2554<br>2553<br>2554<br>2553<br>2554<br>2553<br>2554<br>2553<br>2554<br>2553<br>2554<br>2555<br>2555    | 61<br>30<br>318<br>331<br>60<br>135<br>59<br>243<br>30<br>63<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -64<br>46<br>-330<br>-352<br>57<br>124<br>49<br>25<br>-358<br>+166<br>135<br>56<br>-33<br>245<br>-59<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 272<br>311<br>3446<br>77<br>210<br>57<br>90<br>33<br>79<br>19<br>60<br>11<br>41<br>75<br>55<br>55<br>105<br>68                                                                     | -65<br>25<br>318<br>235<br>-66<br>-216<br>-70<br>-107<br>32<br>-75<br>-19<br>51<br>20<br>-34<br>81<br>58<br>-100<br>-78                                                                                  |                                                                                                                                                                                                  | 112<br>109<br>94<br>233<br>136<br>65<br>78<br>77<br>75<br>103<br>162<br>146<br>28<br>68<br>80<br>23<br>77                                      | -108<br>-113<br>99<br>229<br>122<br>-63<br>-67<br>-73<br>-52<br>107<br>-169<br>-146<br>-28<br>71<br>82<br>22<br>-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 530<br>531<br>532<br>533<br>535<br>535<br>535<br>535<br>535<br>535<br>535<br>535 | 124<br>70<br>100<br>28<br>199<br>54<br>97<br>123<br>33<br>32<br>30                                                            | -130<br>62<br>32<br>-209<br>-59<br>99<br>109<br>33<br>23<br>29                                                                                                                   |
| 051<br>052<br>053<br>054<br>055<br>051<br>052<br>153<br>155<br>060<br>061<br>060<br>061<br>060                                                                                                                                                                                                                                                                                              | 142<br>95<br>122<br>31<br>84<br>27<br>150<br>108<br>24<br>61<br>12<br>57<br>139<br>28<br>93<br>35                                                                                                                          | -148<br>-83<br>147<br>-33<br>-86<br>-21<br>141<br>101<br>19<br>-67<br>-14<br>-46<br>154<br>-24<br>-28<br>-38                                                                                                                                                                                                                                                                                     | 136<br>136<br>136<br>151<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 162<br>207<br>37<br>189<br>454<br>31<br>224<br>64<br>134<br>52<br>23<br>48<br>207<br>84<br>613<br>121                                                                                                          | 206<br>-38<br>187<br>430<br>27<br>-240<br>-49<br>10<br>155<br>51<br>51<br>51<br>51<br>-54<br>-194<br>81<br>569<br>9120                                | 2112<br>213<br>214<br>215<br>216<br>217<br>210<br>211<br>212<br>214<br>215<br>214<br>215<br>216<br>211<br>212<br>214<br>215<br>216<br>211<br>212<br>214<br>214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 279<br>223<br>349<br>137<br>75<br>56<br>87<br>418<br>281<br>210<br>79<br>45<br>675<br>475<br>475<br>834<br>198                                                                                                                                           | -245<br>-221<br>-347<br>-152<br>-79<br>64<br>91<br>-378<br>-276<br>-216<br>-216<br>-212<br>-73<br>5<br>42<br>-568<br>428<br>809<br>199                                                                                                                                                                             | 2501<br>2552<br>2553<br>2553<br>2555<br>2644<br>2664<br>2664<br>2664<br>2664<br>2664<br>2664                                                                                                                    | 209<br>54<br>225<br>53<br>76<br>73<br>67<br>54<br>24<br>86<br>156<br>121<br>-28<br>27<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                        | -200<br>57<br>55<br>-264<br>96<br>67<br>58<br>52<br>16<br>-90<br>-164<br>108<br>-26<br>20<br>-106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 338<br>340<br>341<br>342<br>344<br>344<br>344<br>344<br>344<br>344<br>344<br>344<br>344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25<br>116<br>72<br>335<br>166<br>52<br>77<br>84<br>212<br>200<br>75<br>57<br>66<br>57<br>54<br>65                                                                                  | 22<br>114<br>-74<br>-324<br>-167<br>52<br>68<br>94<br>207<br>200<br>76<br>-49<br>-67<br>61<br>-58<br>70                                                                                                  | 431<br>432<br>433<br>435<br>431<br>435<br>431<br>435<br>435<br>435<br>435<br>435<br>435<br>435<br>435<br>432<br>432<br>432<br>433<br>435<br>435<br>435<br>435<br>435<br>435<br>435<br>435<br>435 | 107<br>127<br>60<br>23<br>178<br>57<br>52<br>39<br>87<br>23<br>90<br>80<br>26<br>44<br>95<br>66<br>12                                          | 107<br>137<br>59<br>-19<br>-19<br>-191<br>-44<br>-53<br>39<br>81<br>26<br>-98<br>-87<br>-98<br>-87<br>39<br>101<br>66<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 540<br>541<br>542<br>544<br>550<br>552<br>555<br>555<br>555<br>564               | 138<br>75<br>132<br>182<br>73<br>28<br>105<br>83<br>80<br>47                                                                  | 146<br>83<br>-150<br>-175<br>-70<br>32<br>113<br>-89<br>-79<br>53                                                                                                                |
| 0612         0633           0665         071           0774         075           0775         073           101         103           102         101           103         101           104         105           105         106           106         107                                                                                                                              | 157<br>479<br>10<br>436<br>186<br>209<br>18<br>23<br>705<br>441<br>186<br>535<br>809<br>18<br>535<br>807<br>10<br>24<br>29<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207                           | -194<br>500<br>18 -9<br>-36<br>210<br>-182<br>16<br>232<br>758<br>-193<br>16<br>-5067<br>-312<br>-109<br>147<br>16<br>-5067<br>-312<br>-189<br>232<br>16<br>-193<br>147<br>16<br>-204<br>-19<br>-34<br>-19<br>-36<br>-36<br>-19<br>-36<br>-19<br>-36<br>-19<br>-36<br>-19<br>-36<br>-19<br>-36<br>-19<br>-36<br>-19<br>-36<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19<br>-19 | 1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1447-1447<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1457-147<br>1477-1 | 464<br>411<br>526<br>526<br>159<br>419<br>120<br>120<br>119<br>120<br>119<br>120<br>119<br>120<br>119<br>120<br>119<br>120<br>120<br>119<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | -50<br>-52<br>-522<br>-599<br>-54<br>-54<br>-54<br>-54<br>-54<br>-54<br>-54<br>-54<br>-54<br>-54                                                      | 2167<br>218<br>2201<br>2223<br>2224<br>2225<br>2224<br>2225<br>2227<br>2227<br>2227<br>2227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35<br>22<br>42<br>595<br>638<br>106<br>52<br>21<br>28<br>27<br>31<br>52<br>21<br>28<br>27<br>31<br>615<br>538<br>41<br>27<br>538<br>30<br>3<br>41<br>27<br>538<br>30<br>30<br>32<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23 | $\begin{array}{c} -28\\ -34\\ -35\\ 552\\ 558\\ 133\\ 137\\ -31\\ -50\\ -26\\ -31\\ -50\\ -33\\ -59\\ -46\\ -33\\ -59\\ -26\\ 70\\ -26\\ 70\\ -26\\ 70\\ -26\\ -33\\ -26\\ -33\\ -26\\ -33\\ -26\\ -33\\ -26\\ -36\\ -36\\ -26\\ -36\\ -26\\ -36\\ -26\\ -26\\ -36\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26\\ -2$ | 25312252<br>255225<br>27172776<br>270<br>283<br>3001300<br>3004<br>3004<br>3004<br>3005<br>3004<br>3005<br>3004<br>3005<br>3004<br>3005<br>3004<br>3005<br>3004<br>3005<br>3004<br>3005<br>3004<br>3005<br>3005 | 105<br>37<br>64<br>75<br>75<br>74<br>25<br>41<br>102<br>140<br>152<br>212<br>217<br>172<br>124<br>308<br>2212<br>2302<br>172<br>13<br>24<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>308<br>2212<br>2302<br>154<br>154<br>154<br>154<br>154<br>154<br>154<br>154 | - (4)<br>- | 42444546 051.3451.2214455 051.222 1423.34646 33.353.355.345.5 551.221456 364466 33.36446 33.36446 33.36446 33.36446 33.36466 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36646 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.36666 33.366666 33.3666666 33.366666666 | 69<br>34<br>24<br>19<br>34<br>377<br>253<br>134<br>58<br>47<br>26<br>36<br>27<br>23<br>138<br>90<br>33<br>218<br>909<br>33<br>218<br>259<br>99<br>14                               | -61<br>-61<br>20<br>25<br>-380<br>-25<br>127<br>52<br>-380<br>-29<br>136<br>82<br>82<br>37<br>-18<br>37<br>21<br>137<br>81<br>32<br>22<br>-246<br>87<br>13<br>-14                                        | 440<br>4442<br>444 <u>444444444444444444444444444</u>                                                                                                                                            | 150<br>78<br>45<br>50<br>84<br>29<br>90<br>33<br>22<br>17<br>31<br>64<br>92<br>90<br>33<br>109<br>52<br>4<br>50<br>109<br>57<br>48<br>77<br>62 | 160<br>9 79<br>9 74<br>9 87<br>- 48<br>- 88<br>- 81<br>- 29<br>71<br>- 29<br>71<br>- 29<br>71<br>- 29<br>71<br>- 29<br>71<br>- 29<br>71<br>- 29<br>- 29<br>71<br>- 48<br>- 48<br>- 48<br>- 82<br>- 29<br>- 29<br>- 20<br>- 29<br>- 20<br>- 20<br> | 600<br>603<br>617<br>627                                                         | 12<br>42<br>36<br>26                                                                                                          | -25<br>-37<br>-31<br>20                                                                                                                                                          |

Table 10(b). Observed and calculated structure factors at -105 °C

|                                           | 50 <b>P</b> o             | 50 <b>P</b> o              |                              | 50 <b>Po</b>              | 5070                       |                          | 5080                     | 50Fc                          | . !                      | 50 <b>F</b> o            | 50Fc                        | 250                      | 50Po                      | 50Fo<br>=581                | 330                       | 50 <b>Fo</b>      | 50Po<br>307                 |
|-------------------------------------------|---------------------------|----------------------------|------------------------------|---------------------------|----------------------------|--------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|---------------------------|-----------------------------|---------------------------|-------------------|-----------------------------|
| 001<br>002<br>003                         | 764<br>966<br>537         | 912<br>-1097<br>-515       | 100<br>101<br>102            | 1567<br>711<br>1016       | 680<br>-1035               | 141<br>142<br>143        | 121<br>42<br>39          | 124 21<br>-44 21<br>45 21     | 1 2 3                    | 236<br>779<br>434        | 203<br>708<br>407           | 251<br>252<br>253        | 209<br>119<br>377         | -219<br>122<br>269          | 331<br>332<br>333         | 56<br>66<br>48    | 43<br>63<br>-35             |
| 004<br>005<br>006                         | 443<br>258<br>115         | -425<br>-246<br>-118       | 103<br>104<br>105            | 329<br>64                 | 307<br>73                  | 145<br>147<br>141        | 101<br>75<br>154         | 97 21<br>-72 21<br>-150 21    | 4<br>5<br>7              | 83<br>134<br>35          | 92<br>-126<br>-42           | 254<br>255<br>251        | 134<br>25<br>96           | 135<br>19<br>-98            | 334<br>335<br>336         | 362<br>146<br>112 | -346<br>-140<br>115         |
| 007                                       | 226                       | 184                        | 107<br>108<br>101            | 43<br>70                  | -50<br>73                  | 142<br>143<br>144        | 771<br>285<br>80         | -768 21<br>-277 21<br>-103 21 | 123                      | 317<br>308<br>430        | 277<br>-218<br>-473         | 252<br>253<br>254        | 445<br>47<br>149          | 444<br>-67<br>-158          | 331<br>332<br>33 <u>3</u> | 400<br>313<br>46  | 373<br>299<br>-19           |
| 011<br>012<br>013                         | 465<br>920<br>612         | -457<br>-951<br>-558       | 103<br>104<br>105            | 308<br>264<br>21          | -352<br>-287<br>2          | 147<br>148               | 133<br>202               | 148 21<br>207 21<br>21        | 4<br>5<br>5              | 166<br>133<br>84         | -173<br>-122<br>101         | 255<br>256<br>257        | 57<br>25<br>39            | 71<br>13<br>-53             | 334<br>335<br>339         | 290<br>153<br>50  | -328<br>-159<br>-43         |
| 014<br>015<br>016                         | 427<br>116<br>401         | -399<br>106<br>392         | 10 <u>6</u><br>107<br>108    | 44<br>75<br>108           | -22<br>71<br>116           | 140<br>141<br>142        | 65<br>213<br>261         | 56 21<br>184 21<br>240        | 17<br>18                 | 261<br>47                | 238<br>67                   | 258<br>250<br>251        | 33<br>326<br>153          | -328                        | 330<br>332<br>333         | 187<br>63<br>183  | -170<br>70<br>-185          |
| 017<br>011<br>013                         | 59<br>751<br>506          | 57<br>846<br>521           | 110                          | 1111<br>318               | -1269<br>-339              | 145<br>141<br>142        | 268<br>164<br>124        | -255 21<br>151 21             |                          | 314<br>352<br>123        | -280<br>-310<br>-124        | 252<br>253<br>255        | 86<br>22<br>58            | 79<br>16<br>62              | 335<br>331<br>332         | 238<br>82<br>80   | 227<br>-88<br>83            |
| 015<br>016<br>017                         | 280<br>100<br>68          | -260<br>-100<br>-54        | 113<br>114<br>115            | 34<br>188<br>67           | 13<br>-194<br>-85          | 143<br>144<br>145        | 705<br>52<br>343         | -670 2<br>-45 2<br>350 2      |                          | 168<br>53<br>820         | 144<br>50<br>-823           | 251<br>252<br>253        | 585<br>305<br>218         | -516<br>-312<br>201         | 333                       | 143<br>156<br>159 | 123<br>-152<br>-185<br>58   |
| 019<br>020                                | 34<br>899                 | 37<br>872                  | 116<br>117<br>118            | 215<br>39<br>169          | 223<br>-29<br>-169         | 146<br>147               | 49<br>30                 | 49 2<br>-55 2                 | 12<br>13<br>14<br>16     | 438<br>1118<br>324<br>77 | 375<br>1072<br>325          | 254<br>255<br>260        | 163                       | 180                         | 337<br>340                | 87<br>165         | 80<br>155                   |
| 021<br>022<br>023<br>024                  | 784<br>1033<br>152<br>701 | -724<br>-990<br>136<br>658 | 111<br>112<br>114<br>115     | 792<br>1794<br>406<br>270 | 2010<br>412<br>258         | 150<br>151<br>153<br>154 | 63<br>133<br>60          | 57 2<br>137 2<br>-56          | 17<br>18                 | 70<br>117                | -70<br>-128                 | 261<br>262<br>264        | 249<br>92<br>82           | 253<br>99<br>81             | 341<br>342<br>343         | 126<br>605<br>262 | -125<br>-576<br>-253        |
| 025<br>028<br>021                         | 237<br>61<br>328          | 203<br>68<br>-265          | 116<br>117<br>118            | 181<br>31<br>15           | -198<br>-33<br>15          | 155<br>156<br>151        | 152<br>30<br>142         | -155 2<br>-35 2<br>134 2      | 20<br>21<br>22           | 597<br>745<br>159        | 625<br>687<br>152           | 261<br>262<br>263        | 139<br>305<br>46          | -312<br>-38<br>284          | 344<br>345<br>341<br>342  | 196<br>71<br>288  | 187<br>68<br>310            |
| 022<br>023<br>024                         | 68<br>541<br>1052         | -16<br>525<br>1035         | 111<br>112                   | 562<br>660                | -477<br>566                | 152<br>153<br>154        | 438<br>87<br>401         | 438 2<br>-03 2<br>-423 2      | 23<br>24<br>25<br>26     | 208<br>77<br>107<br>370  | -92<br>-348                 | 265<br>270               | 118<br>39                 | -130<br>41                  | 343<br>344<br>345         | 314<br>142<br>96  | 338<br>146<br>-80           |
| 025<br>026<br>027                         | 398<br>113                | -396<br>-110               | 113<br>114<br>115<br>116     | 497<br>46<br>214          | -468<br>-21<br>174         | 156<br>158               | 31<br>23                 | -29 2<br>25 2<br>25 2         | 27<br>21<br>22           | 63<br>60<br>700          | -63<br>50<br>-704           | 272<br>273<br>271        | 66<br>58<br>171           | 56<br>-71<br>181            | 346<br>347                | 181<br>41         | -180<br>-54                 |
| 030<br>031<br>032                         | 912<br>209<br>697         | -982<br>205<br>734         | 117<br>118<br>111            | 65<br>13<br>429           | 65<br>-2<br>-414           | 150<br>151<br>152        | 212<br>172<br>90         | -218 2<br>173 2<br>85 2       | 23                       | 72<br>104<br>191         | -64<br>102<br>-185<br>-89   | 274<br>274<br>276        | 98<br>122                 | -104<br>137                 | 341<br>342<br>343         | 113<br>122<br>36  | -104<br>-132<br>-34         |
| 033<br>034<br>035<br>036                  | 342<br>229<br>74          | 312<br>244<br>-61          | 112<br>113<br>114            | 252<br>68<br>71           | -357<br>267<br>-65<br>63   | 154<br>155<br>156        | 133<br>110<br>16         | 121 2<br>107 2<br>-33         | 27<br>29                 | 56<br>71                 | -53<br>79                   | 270<br>272<br>273        | 94<br>26<br>105           | 105<br>16<br>-120           | 345<br>345<br>341         | 40<br>70<br>172   | 36<br>-61<br>148            |
| 037<br>031<br>032                         | 65<br>565<br>413          | -499<br>-353               | 116<br>117                   | 186<br>44                 | 176<br>51                  | 157<br>151<br>152        | 143<br>791<br>72         | -122<br>-761<br>-66           | 220                      | 317<br>785<br>324        | 304<br>-718<br>-274<br>-103 | 271<br>281<br>281        | 69<br>22                  | -76<br>-21                  | 342<br>343<br>344<br>345  | 106<br>57<br>36   | -101<br>71<br>38            |
| 033<br>034<br>035                         | 181<br>43<br>175          | -180<br>44<br>148          | 120<br>121<br>122            | 205<br>116<br>638         | -220<br>18<br>-608         | 153<br>154<br>155        | 427<br>88<br>38          | 394<br>96<br>17               | 226                      | 40<br>1209<br>436        | -47<br>1121<br>404          | 283<br>300               | 104<br>84                 | 110<br>84                   | 346<br>350                | 84<br>652         | 73<br>-665                  |
| 03 <u>7</u><br>038                        | 398<br>79<br>193          | 354<br>68<br>-175          | 123<br>124<br>126<br>121     | 516<br>269<br>314         | -259<br>-259<br>-358       | 161<br>162<br>163        | 158<br>119<br>210        | 167<br>-113<br>-217           | 224<br>225<br>226        | 66<br>93<br>279          | -68<br>-105<br>-274         | 301<br>302<br>303        | 229<br>216<br>46          | -199<br>-215<br>-11         | 351<br>352<br>353         | 348<br>141<br>283 | -360<br>151<br>277          |
| 040<br>041<br>042                         | 464<br>311<br>437         | 427<br>296<br>424          | 122<br>123<br>124            | 607<br>680<br>1120        | -629<br>691<br>1137        | 164<br>161<br>162        | 84<br>38<br>178          | -103<br>44<br>185<br>79       | 227<br>228<br>230        | 59<br>80                 | -200<br>58<br>83            | 305<br>306<br>301        | 29<br>52<br>296           | -47<br>45<br>314            | 351<br>352<br>353         | 115<br>252<br>60  | -113<br>236<br>59           |
| 043<br>044<br>045<br>045                  | 130<br>178<br>143         | -150<br>-164<br>148<br>-63 | 125<br>126<br>127<br>128     | 282<br>116<br>88          | -317<br>-123<br>-87        | 164<br>166<br>167        | 172<br>155<br>31         | 166<br>-190<br>-61            | 231<br>232<br>233        | 259<br>270<br>194        | -236<br>276<br>-168         | 302<br>303<br>304        | 24 <b>8</b><br>476<br>223 | -173<br>-492<br>209         | 354<br>355<br>356         | 166<br>175<br>19  | 179<br>185<br>22            |
| 047<br>041<br>042                         | 145<br>76<br>526          | -148<br>60<br>-448         | 1 <u>2</u> 0<br>1 <u>2</u> 1 | 164<br>648                | -157<br>-578               | 160<br>161               | 72<br>608                | -77<br>-575<br>-167           | 234<br>235<br>236<br>237 | 630<br>109<br>160<br>134 | -116<br>173<br>148          | 305<br>306<br>310        | 404<br>71<br>409          | -371                        | 358                       | 92<br>31          | -69<br>-27                  |
| 04 <u>3</u><br>04 <u>4</u><br>04 <u>5</u> | 151<br>124<br>103         | -142<br>-110<br>-105       | 122<br>123<br>124            | 250<br>29<br>145<br>150   | -254<br>-195<br>151<br>136 | 163<br>164<br>165        | 171<br>57<br>61          | 161<br>57<br>64               | 231<br>232<br>233        | 621<br>408<br>70         | 632<br>404<br>-85           | 311<br>312<br>313        | 73<br>209<br>40           | 77<br>193<br>12             | 351<br>352<br>353         | 104<br>43<br>67   | 114<br>26<br>-67            |
| 050<br>051                                | 353<br>239                | 329<br>-242                | 126<br>128<br>121            | 182<br>82<br>695          | -171<br>79<br>640          | 166<br>161<br>162        | 45<br>303<br>129         | 48<br>294<br>116              | 234<br>235<br>236<br>237 | 487<br>81<br>174<br>77   | -422<br>59<br>181<br>-66    | 314<br>315<br>311<br>312 | 71<br>399<br>51           | 65<br>-341<br>-55           | 324<br>352<br>354         | 73<br>78          | 62<br>85                    |
| 052<br>053<br>054                         | 148<br>227<br>80          | -133<br>232<br>-96         | 122<br>123<br>124            | 101<br>103<br>188<br>85   | 62<br>130<br>178<br>96     | 164                      | 44                       | -80                           | 238<br>230               | 52<br>330                | -67<br>317                  | 313<br>314<br>315        | 96<br>101<br>259          | -89<br>-111<br>-260         | 360<br>361<br>362         | 67<br>292<br>170  | 63<br>288<br>184            |
| 055<br>056<br>051<br>052                  | 234<br>68<br>255<br>193   | -74<br>236<br>173          | 127<br>128                   | 180<br>33                 | -176<br>-46                | 171<br>172<br>173        | 206<br>155<br>32         | -210<br>-163<br>-30           | 231<br>232<br>233        | 725<br>115<br>466        | 607<br>120<br>-429          | 315<br>317<br>318        | 301<br>40                 | 278<br>48                   | 363<br>364<br>361<br>362  | 113<br>358<br>543 | 115<br>-365<br>-541         |
| 053<br>054<br>055                         | 43<br>145<br>34           | -156<br>-35                | 130<br>131<br>132            | 947<br>203<br>883<br>72   | -1028<br>-182<br>855<br>50 | 171<br>171<br>174        | 165<br>127               | 179<br>116                    | 235<br>231<br>232        | 117<br>76<br>23          | 98<br>76<br>22              | 310<br>311<br>312        | 89<br>479<br>143          | -125<br>468<br>126          | 363<br>364<br>365         | 40<br>215<br>47   | -43<br>232<br>55            |
| 056<br>057<br>060                         | 42<br>63<br>106           | -47<br>-59<br>-106         | 135<br>134<br>137<br>131     | 253<br>60<br>296          | -240<br>72<br>-258         | 170<br>171<br>172        | 78<br>130<br>47          | 87<br>126<br>-49              | 234<br>235<br>236        | 439<br>503<br>76         | -417<br>-506<br>68<br>263   | 313<br>314<br>315        | 127<br>121<br>51<br>475   | -124<br>-136<br>-39<br>-549 | 366<br>367<br>360         | 44<br>57<br>36    | 65<br>35                    |
| 061<br>062<br>063                         | 257<br>47<br>196          | 272<br>-55<br>-202         | 132<br>133<br>134            | 199<br>84<br>79           | -106<br>-95<br>-106        | 173<br>174<br>175        | 340<br>101<br>113<br>137 | -333<br>-93<br>118<br>137     | 237<br>240<br>241        | 465<br>180               | 468<br>~182                 | 312<br>313<br>315        | 227<br>413<br>38          | 217<br>414<br>-42           | 361<br>362                | 39<br>109         | 34<br>105                   |
| 064<br>065<br>061                         | 96<br>32<br>330           | -110<br>46<br>-298         | 135<br>136<br>138            | 473<br>185<br>26          | 524<br>-193<br>-50         | 172                      | 94<br>85                 | 87<br>79                      | 242<br>243<br>244        | 662<br>195<br>180        | -724<br>-183<br>-180        | 318<br>320               | 132<br>226                | -146<br>338<br>198          | 370<br>371<br>372         | 165<br>110<br>172 | 166<br>106<br>177<br>214    |
| 063<br>064<br>065                         | 138<br>57<br>66           | 148<br>51<br>66            | 130<br>131                   | 303<br>702                | 296<br>548                 | 180<br>181<br>182        | 157<br>28<br>96          | -161<br>-38<br>106            | 245<br>246<br>241<br>242 | 108<br>161<br>92         | 109<br>-167<br>-86          | 322<br>323<br>326        | 210<br>210<br>44<br>155   | 204<br>38<br>-156           | 373<br>374<br>376         | 276<br>313<br>149 | -264<br>-307<br>156         |
| 065<br>070                                | 22<br>24                  | -32                        | 132<br>133<br>134            | 412<br>442<br>147<br>86   | -429<br>-132<br>-65        | 183<br>200               | 135<br>532               | 128                           | 243<br>244<br>245        | 224<br>133<br>72         | 267<br>141<br>-82           | 321<br>322<br>323        | 64<br>393<br>276          | 110<br>-417<br>-304         | 380<br>381                | 180<br>96         | 186<br>101                  |
| 072<br>073<br>074                         | 88<br>50<br>65            | ~_100<br>63<br>66          | 137<br>138<br>131            | 86<br>69<br>178           | -60<br>-59<br>207          | 201<br>202<br>203        | . 216<br>404<br>119      | -173<br>-362<br>124           | 245<br>247<br>248        | 140<br>70<br>127         | -138<br>82<br>128           | 324<br>325<br>327<br>328 | 21<br>126<br>68           | -127<br>-8<br>-108<br>74    | 383<br>383                | 116<br>575        | 116<br>543                  |
| 071<br>072<br>073                         | 219<br>72<br>320          | 217<br>63<br>-264          | 332<br>133<br>134            | 76<br>113<br>55<br>375    | 53<br>95<br>-45<br>-380    | 204<br>205<br>206<br>207 | 400<br>173<br>42<br>51   | 171<br>47<br>-48              | 240<br>241<br>242        | 99<br>83<br>162          | 97<br>49<br>149             | 329<br>329               | 139<br>138                | 140<br>144                  | 402<br>403<br>404         | 236<br>161<br>81  | -248<br>-156<br>-86         |
| 075<br>080<br>081                         | 81<br>40<br>71            | 97<br>-44<br>76            | 136<br>137                   | 47<br>251                 | -51<br>222                 | 201<br>202<br>203        | 637<br>296<br>373        | -607<br>-260<br>-388          | 243<br>244<br>245<br>245 | 221<br>32<br>239         | 231<br>34<br>-217<br>102    | 323<br>324<br>325        | 387<br>420<br>193<br>86   | -375<br>389<br>120<br>-83   | 405<br>401<br>403<br>403  | 586<br>337<br>115 | -115<br>664<br>-352<br>-119 |
| 081<br>083<br>064                         | 29<br>123<br>31           | -27<br>105<br>-39          |                              |                           |                            | 205<br>205<br>208        | 559<br>155<br>33         | 576<br>158<br>-32             | 242<br>243<br>244        | 489<br>698<br>61         | -459<br>-645<br>66          | 326<br>321<br>322        | 66<br>207<br>144          | -91<br>197<br>-143          | 40<br>40<br>40            | 90<br>105<br>71   | -102<br>-112<br>77          |
|                                           |                           |                            |                              | ·                         |                            | 209                      | 26                       | -32                           | 245<br>246               | 259<br>145               | 286<br>148                  | 323<br>324<br>325        | 52<br>57<br>49            | -71<br>67<br>44<br>-182     |                           |                   |                             |
|                                           |                           |                            |                              |                           |                            |                          |                          |                               |                          |                          |                             | 32                       | 127                       | -168<br>52                  |                           |                   |                             |

| Tabl | le 1( | )(b)( | (cont.) |
|------|-------|-------|---------|
|      |       |       | (       |

|     | 50 Fo     | 50Po |     | 50Fo | 50Fc |             | 50Fo | 50 <b>F</b> 0 |     | 50Po | 50 <b>F</b> a |         | 50Fo | 50Pc |             | 50Fo | 50Fc |
|-----|-----------|------|-----|------|------|-------------|------|---------------|-----|------|---------------|---------|------|------|-------------|------|------|
| 410 | 273       | -254 | 420 | 74   | -87  | 440         | 216  | 230           | 460 | 64   | 51            | 520     | 143  | -147 | 550         | 48   | 37   |
| 411 | 170       | -184 | 421 | 68   | -93  | 441         | 148  | 152           | 461 | 103  | 103           | 521     | 285  | -244 | 551         | 163  | 168  |
| 412 | 174       | -168 | 423 | 311  | 317  | 442         | 83   | -90           | 461 | 194  | -182          | 522     | 98   | -79  | 55 <u>2</u> | 238  | 234  |
| 413 | 241       | -263 | 424 | 178  | 179  | 443         | 90   | -91           | 462 | 219  | -215          | 523     | 197  | 179  | 553         | 132  | 110  |
| 415 | 166       | 183  | 425 | 55   | -55  | 444         | 25   | 25            | 463 | 61   | 63            | 52I     | 148  | -159 | 554         | 192  | -166 |
| 411 | 63        | 86   | 421 | 263  | -267 | 441         | 199  | 163           | 464 | 122  | 143           | 522     | 153  | -129 | 555         | 368  | -258 |
| 412 | 610       | 568  | 422 | 268  | -246 | 443         | 211  | -183          | 465 | 45   | 76            | 523     | 180  | 172  | 556         | 105  | -96  |
| 413 | 662       | 540  | 423 | 78   | -60  | 444         | 53   | -73           |     |      | 10            | 524     | 489  | 427  |             |      | ~    |
| 414 | 97        | -74  | 424 | 89   | 92   | 442         | 21   | -14           | 470 | 31   | 42            | 222     | 397  | 281  | 560         | 42   | 21   |
| 415 | 327       | -333 | 425 | 162  | 1/3  | 440         | 21   | -0(           | 4/1 | 101  | -44           | 520     | 88   | -70  | 202         | 39   | 114  |
|     | <i>/-</i> |      | 426 | 12   | 11   | 440         | 00   | 14            | 4/1 | 121  | 125           | 241     | 251  | -110 | 202         | 101  | 130  |
| 410 | 67        | 66   |     | 10   | -69  | 471         | 60   | -66           | 4/5 | 180  | -191          | 670     |      | -111 | 204         | 143  | 51   |
| 411 | 533       | 556  | 430 | 224  | 222  | 441         | 57   | -71           | 4/4 | 100  | -105          | 520     | 52   | -111 | 202         | 60   | 51   |
| 412 | 330       | 360  | 431 | 205  | 222  | 475         | AQ.  | -96           | 500 | 194  | 271           | <i></i> | 72   | 41   | 600         | 3.7  | -43  |
| 415 | 160       | - 20 | 432 | 143  | 125  | 777         | 121  | 134           | 500 | 138  | -129          | 530     | 136  | -150 | 601         | 33   | -45  |
| 315 | 72        | -1/5 | 433 |      | -50  | 122         | 128  | 149           | 503 | 62   | -67           | 511     | 298  | 226  | 602         | 105  | -92  |
| ĨĨÍ | 201       | -214 | 434 | 71   | -63  | 423         | 93   | 85            | 501 | 351  | 301           | 532     | 227  | 220  | 603         | 100  | -98  |
| 412 | 116       | -135 | 433 | 385  | -326 |             |      | -,            | 503 | 160  | -156          | 521     | 461  | -371 | ,           |      | -    |
| 413 | 239       | -236 | 432 | 103  | -137 | 450         | 190  | -167          | 504 | 178  | -172          | 532     | 225  | -204 | 610         | 21   | -11  |
| 414 | 255       | -226 | 111 | 36   | -36  | 451         | 132  | -136          | 505 | 183  | -155          | 523     | 112  | -110 | 614         | 57   | -60  |
| 416 | 102       | 113  | 434 | 144  | -111 | 452         | 64   | 52            | 505 | 40   | -37           | 584     | 56   | -49  |             |      |      |
| 417 | 120       | 101  | 435 | 34   | 28   | 453         | 58   | 47            |     |      |               | 535     | 189  | 179  | 622         | 48   | -54  |
|     |           |      | 436 | 141  | 172  | 45 <b>1</b> | 101  | 109           | 510 | 115  | -168          | 526     | 375  | 304  | 624         | 43   | 44   |
| 420 | 213       | -198 | 437 | 123  | 117  | 452         | 180  | 183           | 511 | 127  | -131          | 527     | 232  | 151  | -           |      |      |
| 421 | 356       | -374 | 438 | 55   | -65  | 453         | 82   | 109           | 512 | 39   | -43           |         |      |      | 632         | 81   | 55   |
| 422 | 44        | -46  |     |      |      | 454         | 51   | 53            | 513 | 98   | -99           | 530     | 85   | 94   | 634         | 76   | -60  |
| 423 | 210       | 243  | 430 | 164  | -168 | 455         | 47   | -59           | 512 | 426  | 410           |         |      |      |             |      |      |
| 424 | 144       | 168  | 431 | 195  | -186 | 456         | 44   | -43           | 513 | 421  | 356           | 540     | 258  | 271  | 641         | 153  | 113  |
| 425 | 54        | 53   | 432 | 36   | -40  | 457         | 13   | -20           | 514 | 41   | -26           | 541     | 131  | 121  | 642         | 48   | -38  |
| 421 | 138       | -123 | 433 | 17   | -18  |             |      |               | 515 | 246  | -194          | 541     | 239  | 188  | 643         | 81   | -70  |
| 422 | 230       | -192 | 431 | 103  | -94  | 450         | 83   | 22            | 516 | 186  | -153          | 242     | 236  | -198 |             |      |      |
| 423 | 76        | 71   | 433 | 175  | 186  | 421         | 49   | 21            | 517 | 128  | -106          | 243     | 458  | -374 |             |      |      |
| 424 | 373       | 371  | 434 | 131  | 147  | 451         | 25   | 01            | 550 | 115  | 111           | 244     | 1/8  | -104 |             |      |      |
| 422 | 281       | 300  | 435 | 51   | 28   |             |      |               | 512 | 101  | -100          | 247     | 101  | 122  |             |      |      |
| 420 | 17        | -93  |     |      |      |             |      |               | 512 | 141  | -145          |         |      |      |             |      |      |
| 441 | 227       | -209 |     |      |      |             |      |               | 513 | 123  | -131          |         |      |      |             |      |      |
|     |           |      |     |      |      |             |      |               | 213 | -23  |               |         |      |      |             |      |      |

length of 2.96 Å, with the hydrogen atom 0.97 Å from the nitrogen and 2.00 Å from the oxygen. The N-H bond makes an angle of  $172^{\circ}$  with the O···H direction.

The dimers are connected by further hydrogen bonds, roughly parallel to the *a* axis, with a mean  $(N \cdots O)$ length of 2.68 Å. The N-H bond and  $O \cdots H$  distances are 0.95 and 2.00 Å respectively, the angle N-H $\cdots O$ being 149°. The closest non-bonding approach is 2.89 Å, between the nitrogen atom of a particular molecule and the atom H(3) of the centrosymmetrically related molecule, translated one unit cell along the *b* axis. This distance represents, roughly, the distance between the chains of molecules in the direction of the *c* axis.

The hydrogen-bonding system clearly influences the rigid body vibrations of the molecule; it has a marked effect on librations in the plane of the molecule, as is shown by the apparent shift of 1.27 Å of the centre of libration from the centre of mass towards the carbamate group. The rigid-body translational vibrations are markedly greater in a direction perpendicular to the plane of the molecule than in directions parallel to this plane. The proportionate decrease in the amplitude of each of these vibrations on lowering the temperature from 25 °C to -105 °C (Table 4) confirms the interpretation of the vibrational parameters as 'thermal'.

## The molecule

A number of accurate determinations of the structure of the amide group have now been made, and it is of interest to compare the lengths of the C=O and C-N bonds in these structures with similar bonds in ethyl carbamate, C(3)-O(2) and C(3)-N (Table 8). The C=O and C-N bonds in ethyl carbamate are respectively shorter and longer than similar bonds in the amide group, although the sum of these lengths in both classes of compound is about the same.

Of further interest is a comparison of the lengths of the C-O bonds in ethyl carbamate with similar bonds in carboxylic esters: unfortunately, esters have not received the same attention as amides, and only vague tendencies can be shown by the results quoted here in Table 9. (In this Table, the three C-O bonds are lettered (a), (b) and (c) corresponding to the bonds C(2)-O(1), O(1)-C(3) and C(3)-O(2) respectively, in ethyl carbamate.) If the expected length of a paraffinic single C–O bond is 1.43 Å, then the ester C–O bonds (a) and (b) are respectively longer and shorter than expected, implying that the atom corresponding to O, takes part in the delocalization of electrons within the carbamate (or carbonyl) group, and that the C-O bond (a) has a total bond order of less than unity. In view of the apparent shortness of the C-C bond in ethyl carbamate, it could, perhaps, be assumed that the structure is not completely refined, particularly when the large thermal vibrations of the atoms C(1) and C(2)are taken into account.

The results in Table 9, however, do show some tendency for the C-O bond (a) to be rather long. This could be due to the fact that the atom O(1) in ethyl carbamate is mostly  $sp^2$  hybridized, thus allowing an unhybridized *p*-orbital to join in the partial  $\pi$  bonding of C(3)-O(1). Since one of the lobes of the  $sp^2$  orbital of O(1) is not used for bond formation, this 'lone pair' probably tends to fill an *s*-orbital, thus increasing the *p*-character of the other two lobes (Pauling, 1960) and it is possible that the partial  $\pi$  bonding of C(3)-O(1) prevents any increase in the length of the Osp<sup>3</sup> lobe along this bond, causing an extra increase in the length of C(2)-O(1).

The partial  $sp^2$  nature of O(1) may account for the planarity of the molecule, for it requires that C(2) be coplanar with the carbamate group; rotation of the ethyl group about the bond C(2)–O(1) is probably prevented by steric hindrance between O(2) and the hydrogens attached to the atom C(2).

It is apparent that no gain in accuracy resulted from the measurement of a second set of intensities at a reduced temperature. The two possible reasons for this are, firstly, the formation of ice around the crystal, and secondly, the fact that the cooling apparatus was modified during the course of measurement. The reduced temperature determination was partly successful, however, in that it increased the number of available intensities, and reduced the errors arising from the librational corrections.

A complete list of observed and calculated structure amplitudes is given in Table 10.

We are indebted to those authors mentioned above, whose computer programs we have used, and in particular to Dr J.S. Rollett, for the use of the MERCURY computer at the University of Oxford. We are grateful to the former Department of Scientific and Industrial Research for the award of a Research Studentship to one of us (B.H.B.) and for the provision of a grant to enable the computational work to be carried out.

#### References

ALBRECHT, G. (1939). Rev. Sci. Instrum. 10, 221. ALEBY, S. (1962). Acta Cryst. 15, 1248.

- AYERST, E. M. & DUKE, J. R. C. (1954). Acta Cryst. 7, 588.
- BAILEY, M. (1949). Acta Cryst. 2, 120.
- BEAGLEY, B. & SMALL, R. W. H. (1963). Proc. Roy. Soc. A, 276, 469.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). *Acta Cryst.* 8, 478.
- BOND, W. L. (1960). Acta Cryst. 13, 814.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 757.
- DAVIES, D. R. & PASTERNAK, R. A. (1956). Acta Cryst. 9, 334.
- DOUGILL, M. W. & JEFFREY, G. A. (1953). Acta Cryst. 6, 831.
- Howells, E. R., PHILLIPS, D. C. & ROGERS, D. (1950). Acta Cryst. 3, 210.
- HUGHES, D. O. & SMALL, R. W. H. (1962). Acta Cryst. 15, 933.
- MCWEENY, R. (1951). Acta Cryst. 4, 513.
- C'GORMAN, J. M., SHAND, W. & SCHOMAKER, V. (1950). J. Amer. Chem. Soc. 72, 4222.
- PAULING, L. (1960). The Nature of the Chemical Bond, p.120. Ithaca: Cornell Univ. Press.
- SMALL, R. W. H. & TRAVERS, S. (1961). J. Sci. Instrum. 38, 205.
- TAKAKI, Y., SASADA, Y. & WATANABE, T. (1960). Acta Cryst. 13, 693.

# Acta Cryst. (1967). 23, 418

# The Crystal and Molecular Structure of Newberyite, MgHPO<sub>4</sub>.3H<sub>2</sub>O

# By D. June Sutor

Department of Chemistry, University College, Gower Street, London, W.C.1, England

## (Received 20 February 1967)

Newberyite, MgHPO<sub>4</sub>.3H<sub>2</sub>O, from Skipton Caves, Victoria, Australia, belongs to the orthorhombic space group *Pbca* with eight molecules in a unit cell of dimensions a = 10.215, b = 10.681, c = 10.014 Å, all  $\pm 0.002$  Å. The crystal structure has been determined by Patterson projections and Fourier syntheses, and refined by three-dimensional least-squares methods to an *R* value of 0.044. The standard deviation in P–O and Mg–O bonds is 0.005 Å. In the phosphate group P–OH is 1.588 Å, the other P–O distances are 1.545, 1.542, 1.500 Å, and most of the O–P–O angles deviate considerably from the tetrahedral value. The distortion probably results from the participation of three phosphate oxygen atoms in the octahedral coordination of magnesium atoms. The Mg–O distances fall into two groups depending on whether the oxygen belongs to a water molecule or a phosphate group. In the latter case, the Mg–O bonds (mean value 2.049 Å) are significantly shorter than in the former (mean 2.118 Å) and probably are of greater ionic character. The crystal structure is very closely packed, with many short O···O contacts, some of which are hydrogen bonds.

#### Introduction

Newberyite or magnesium hydrogen orthophosphate trihydrate, MgHPO<sub>4</sub>.3H<sub>2</sub>O, is a naturally occurring mineral. It was first identified as a new species in Skipton Caves, Victoria, Australia, where it occurs as large crystals in bat guano. Other well-known deposits also associated with guano are in Mejillones, Chile, Ascension Island and the Tunnel du Comeran in Réunion. An unusual deposit in crystal relics of what was originally struvite has recently been found in Paoha Island, Mono Lake, California (Cohen & Ribbe, 1966). Parsons (1956) identified newberyite as a constituent of a urinary calculus and its occurrence in a few calculi has subsequently been reported elsewhere. We have found it a common constituent of certain collections of calculi studied in this laboratory, *e.g.* 57% of the stones from a collection of (allegedly) modern Indonesian bladder calculi and 31% of the stones examined from the Norwich Hospital Museum Collection of 19th-century bladder calculi contain newberyite (Lonsdale & Sutcr, 1966).

In many of the deposits both mineral and biological, struvite is associated with newberyite, and at Paoha Island the original struvite morphology, preserved by a coating of monetite, indicates that decomposition of